Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 132(4): 881-894, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36661206

RESUMO

BACKGROUND AND AIMS: Crassulacean acid metabolism (CAM) is a specialized type of photosynthesis characterized by a diel pattern of stomatal opening at night and closure during the day, which increases water-use efficiency. Starch degradation is a key regulator of CAM, providing phosphoenolpyruvate as a substrate in the mesophyll for nocturnal assimilation of CO2. Growing recognition of a key role for starch degradation in C3 photosynthesis guard cells for mediating daytime stomatal opening presents the possibility that starch degradation might also impact CAM by regulating the provision of energy and osmolytes to increase guard cell turgor and drive stomatal opening at night. In this study, we tested the hypothesis that the timing of diel starch turnover in CAM guard cells has been reprogrammed during evolution to enable nocturnal stomatal opening and daytime closure. METHODS: Biochemical and genetic characterization of wild-type and starch-deficient RNAi lines of Kalanchoë fedtschenkoi with reduced activity of plastidic phosphoglucomutase (PGM) constituted a preliminary approach for the understanding of starch metabolism and its implications for stomatal regulation in CAM plants. KEY RESULTS: Starch deficiency reduced nocturnal net CO2 uptake but had negligible impact on nocturnal stomatal opening. In contrast, daytime stomatal closure was reduced in magnitude and duration in the starch-deficient rPGM RNAi lines, and their stomata were unable to remain closed in response to elevated concentrations of atmospheric CO2 administered during the day. Curtailed daytime stomatal closure was linked to higher soluble sugar contents in the epidermis and mesophyll. CONCLUSIONS: Nocturnal stomatal opening is not reliant upon starch degradation, but starch biosynthesis is an important sink for carbohydrates, ensuring daytime stomatal closure in this CAM species.


Assuntos
Metabolismo Ácido das Crassuláceas , Kalanchoe , Metabolismo Ácido das Crassuláceas/genética , Kalanchoe/metabolismo , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Dióxido de Carbono/metabolismo , Amido/metabolismo , Fotossíntese/fisiologia
2.
Curr Biol ; 32(11): R539-R553, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671732

RESUMO

The acquisition of stomata is one of the key innovations that led to the colonisation of the terrestrial environment by the earliest land plants. However, our understanding of the origin, evolution and the ancestral function of stomata is incomplete. Phylogenomic analyses indicate that, firstly, stomata are ancient structures, present in the common ancestor of land plants, prior to the divergence of bryophytes and tracheophytes and, secondly, there has been reductive stomatal evolution, especially in the bryophytes (with complete loss in the liverworts). From a review of the evidence, we conclude that the capacity of stomata to open and close in response to signals such as ABA, CO2 and light (hydroactive movement) is an ancestral state, is present in all lineages and likely predates the divergence of the bryophytes and tracheophytes. We reject the hypothesis that hydroactive movement was acquired with the emergence of the gymnosperms. We also conclude that the role of stomata in the earliest land plants was to optimise carbon gain per unit water loss. There remain many other unanswered questions concerning the evolution and especially the origin of stomata. To address these questions, it will be necessary to: find more fossils representing the earliest land plants, revisit the existing early land plant fossil record in the light of novel phylogenomic hypotheses and carry out more functional studies that include both tracheophytes and bryophytes.


Assuntos
Briófitas , Embriófitas , Evolução Biológica , Briófitas/fisiologia , Embriófitas/genética , Fósseis , Filogenia , Estômatos de Plantas/fisiologia
3.
Funct Plant Biol ; 48(7): 703-716, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33663679

RESUMO

As future climates continue to change, precipitation deficits are expected to become more severe across tropical ecosystems. As a result, it is important that we identify plant physiological traits that act as adaptations to drought, and determine whether these traits act synergistically or independently of each other. In this study, we assessed the role of three leaf-level putative adaptations to drought: crassulacean acid metabolism (CAM), the turgor loss point (TLPΨ) and water storage hydrenchyma tissue. Using the genus Clusia as a model, we were able to explore the extent to which these leaf physiological traits co-vary, and also how they contribute to species' distributions across a precipitation gradient in Central and South America. We found that CAM is independent of the TLPΨ and hydrenchyma depth in Clusia. In addition, we provide evidence that constitutive CAM is an adaptation to year-long water deficits, whereas facultative CAM appears to be more important for surviving acute dry seasons. Finally, we find that the other leaf traits tested did not correlate with environmental precipitation, suggesting that the reduced transpirational rates associated with CAM obviate the need to adapt the TLPΨ and hydrenchyma depth in this genus.


Assuntos
Clusia , Metabolismo Ácido das Crassuláceas , Ecossistema , Fotossíntese , América do Sul
4.
J Exp Bot ; 72(12): 4419-4434, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33754643

RESUMO

In plants with Crassulacean acid metabolism (CAM), it has been proposed that the requirement for nocturnal provision of phosphoenolpyruvate as a substrate for CO2 uptake has resulted in a re-routing of chloroplastic starch degradation from the amylolytic route to the phosphorolytic route. To test this hypothesis, we generated and characterized four independent RNAi lines of the obligate CAM species Kalanchoë fedtschenkoi with a >10-fold reduction in transcript abundance of plastidic α-glucan phosphorylase (PHS1). The rPHS1 lines showed diminished nocturnal starch degradation, reduced dark CO2 uptake, a reduction in diel water use efficiency (WUE), and an overall reduction in growth. A re-routing of starch degradation via the hydrolytic/amylolytic pathway was indicated by hyperaccumulation of maltose in all rPHS1 lines. Further examination indicated that whilst operation of the core circadian clock was not compromised, plasticity in modulating net dark CO2 uptake in response to changing photoperiods was curtailed. The data show that phosphorolytic starch degradation is critical for efficient operation of the CAM cycle and for optimizing WUE. This finding has clear relevance for ongoing efforts to engineer CAM into non-CAM species as a means of boosting crop WUE for a warmer, drier future.


Assuntos
Metabolismo Ácido das Crassuláceas , Amido , Fosforilases , Fotossíntese , Folhas de Planta/metabolismo , Amido/metabolismo , Água
5.
Plant J ; 103(2): 869-888, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314451

RESUMO

Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that offers the potential to engineer improved water-use efficiency (WUE) and drought resilience in C3 plants while sustaining productivity in the hotter and drier climates that are predicted for much of the world. CAM species show an inverted pattern of stomatal opening and closing across the diel cycle, which conserves water and provides a means of maintaining growth in hot, water-limited environments. Recent genome sequencing of the constitutive model CAM species Kalanchoë fedtschenkoi provides a platform for elucidating the ensemble of proteins that link photosynthetic metabolism with stomatal movement, and that protect CAM plants from harsh environmental conditions. We describe a large-scale proteomics analysis to characterize and compare proteins, as well as diel changes in their abundance in guard cell-enriched epidermis and mesophyll cells from leaves of K. fedtschenkoi. Proteins implicated in processes that encompass respiration, the transport of water and CO2 , stomatal regulation, and CAM biochemistry are highlighted and discussed. Diel rescheduling of guard cell starch turnover in K. fedtschenkoi compared with that observed in Arabidopsis is reported and tissue-specific localization in the epidermis and mesophyll of isozymes implicated in starch and malate turnover are discussed in line with the contrasting roles for these metabolites within the CAM mesophyll and stomatal complex. These data reveal the proteins and the biological processes enriched in each layer and provide key information for studies aiming to adapt plants to hot and dry environments by modifying leaf physiology for improved plant sustainability.


Assuntos
Metabolismo Ácido das Crassuláceas , Kalanchoe/metabolismo , Células do Mesofilo/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Especificidade de Órgãos , Fotossíntese , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...